Cargando…
Auto-Denoising for EEG Signals Using Generative Adversarial Network
The brain–computer interface (BCI) has many applications in various fields. In EEG-based research, an essential step is signal denoising. In this paper, a generative adversarial network (GAN)-based denoising method is proposed to denoise the multichannel EEG signal automatically. A new loss function...
Autores principales: | An, Yang, Lam, Hak Keung, Ling, Sai Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914841/ https://www.ncbi.nlm.nih.gov/pubmed/35270895 http://dx.doi.org/10.3390/s22051750 |
Ejemplares similares
-
Digital radiography image denoising using a generative adversarial network
por: Sun, Yuewen, et al.
Publicado: (2018) -
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Fast myocardial perfusion SPECT denoising using an attention-guided generative adversarial network
por: Sun, Jingzhang, et al.
Publicado: (2023) -
A Generative Adversarial Network-Based Image Denoiser Controlling Heterogeneous Losses
por: Cho, Sung In, et al.
Publicado: (2021) -
A generative adversarial network with “zero-shot” learning for positron image denoising
por: Zhu, Mingwei, et al.
Publicado: (2023)