Cargando…
Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process
Fault diagnosis systems are used to improve the productivity and reduce the costs of the manufacturing process. However, the feature variables in existing systems are extracted based on the classification performance of the final model, thereby limiting their applications to models with different co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914842/ https://www.ncbi.nlm.nih.gov/pubmed/35271122 http://dx.doi.org/10.3390/s22051975 |
_version_ | 1784667850734043136 |
---|---|
author | Park, Byeonghui Lee, Yoonjae Yeo, Myeonghwan Lee, Haemi Joo, Changbeom Lee, Changwoo |
author_facet | Park, Byeonghui Lee, Yoonjae Yeo, Myeonghwan Lee, Haemi Joo, Changbeom Lee, Changwoo |
author_sort | Park, Byeonghui |
collection | PubMed |
description | Fault diagnosis systems are used to improve the productivity and reduce the costs of the manufacturing process. However, the feature variables in existing systems are extracted based on the classification performance of the final model, thereby limiting their applications to models with different conditions. This paper proposes an algorithm to improve the characteristics of feature variables by considering the cutting conditions. Regardless of the frequency band, the noise of the measurement data was reduced through an oversampling method, setting a window length through a cutter sampling frequency, and improving its sensitivity to shock signal. An experiment was subsequently performed to confirm the performance of the model. Using normal and wear tools on AI7075 and SM45C, the diagnosis accuracies were 97.1% and 95.6%, respectively, with a reduction of 85% and 83%, respectively, in the time required to develop a diagnosis model. Therefore, the proposed algorithm reduced the model computation time and developed a model with high accuracy by enhancing the characteristics of the feature variable. The results of this study can contribute significantly to the establishment of a high-precision monitoring system for various processing processes. |
format | Online Article Text |
id | pubmed-8914842 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89148422022-03-12 Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process Park, Byeonghui Lee, Yoonjae Yeo, Myeonghwan Lee, Haemi Joo, Changbeom Lee, Changwoo Sensors (Basel) Article Fault diagnosis systems are used to improve the productivity and reduce the costs of the manufacturing process. However, the feature variables in existing systems are extracted based on the classification performance of the final model, thereby limiting their applications to models with different conditions. This paper proposes an algorithm to improve the characteristics of feature variables by considering the cutting conditions. Regardless of the frequency band, the noise of the measurement data was reduced through an oversampling method, setting a window length through a cutter sampling frequency, and improving its sensitivity to shock signal. An experiment was subsequently performed to confirm the performance of the model. Using normal and wear tools on AI7075 and SM45C, the diagnosis accuracies were 97.1% and 95.6%, respectively, with a reduction of 85% and 83%, respectively, in the time required to develop a diagnosis model. Therefore, the proposed algorithm reduced the model computation time and developed a model with high accuracy by enhancing the characteristics of the feature variable. The results of this study can contribute significantly to the establishment of a high-precision monitoring system for various processing processes. MDPI 2022-03-03 /pmc/articles/PMC8914842/ /pubmed/35271122 http://dx.doi.org/10.3390/s22051975 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Park, Byeonghui Lee, Yoonjae Yeo, Myeonghwan Lee, Haemi Joo, Changbeom Lee, Changwoo Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title | Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title_full | Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title_fullStr | Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title_full_unstemmed | Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title_short | Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process |
title_sort | tool-condition diagnosis model with shock-sharpening algorithm for drilling process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914842/ https://www.ncbi.nlm.nih.gov/pubmed/35271122 http://dx.doi.org/10.3390/s22051975 |
work_keys_str_mv | AT parkbyeonghui toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess AT leeyoonjae toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess AT yeomyeonghwan toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess AT leehaemi toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess AT joochangbeom toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess AT leechangwoo toolconditiondiagnosismodelwithshocksharpeningalgorithmfordrillingprocess |