Cargando…
Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps
Vibration analysis is an established method for fault detection and diagnosis of rolling element bearings. However, it is an expert oriented exercise. To relieve the experts, the use of Artificial Intelligence (AI) techniques such as deep neural networks, especially convolutional neural networks (CN...
Autores principales: | Tayyab, Syed Muhammad, Chatterton, Steven, Pennacchi, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914858/ https://www.ncbi.nlm.nih.gov/pubmed/35271173 http://dx.doi.org/10.3390/s22052026 |
Ejemplares similares
-
A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault Diagnosing of Rolling Element Bearings in a Locomotive Powertrain
por: Xu, Lang, et al.
Publicado: (2018) -
A Tacholess Order Tracking Method Based on Inverse Short Time Fourier Transform and Singular Value Decomposition for Bearing Fault Diagnosis
por: Xu, Lang, et al.
Publicado: (2020) -
Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings
por: Xie, Shenglong, et al.
Publicado: (2020) -
Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions
por: Liu, Hengchang, et al.
Publicado: (2019) -
Intelligent Fault Diagnosis of Rolling Element Bearings Based on Modified AlexNet †
por: Mohiuddin, Mohammad, et al.
Publicado: (2023)