Cargando…
Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autonomous Driving
Multibody models built in commercial software packages, e.g., ADAMS, can be used for accurate vehicle dynamics, but computational efficiency and numerical stability are very challenging in complex driving environments. These issues can be addressed by using data-driven models, owing to their robust...
Autores principales: | Nie, Xiaobo, Min, Chuan, Pan, Yongjun, Li, Ke, Li, Zhixiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914868/ https://www.ncbi.nlm.nih.gov/pubmed/35271160 http://dx.doi.org/10.3390/s22052013 |
Ejemplares similares
-
An Improved Deep Neural Network Model of Intelligent Vehicle Dynamics via Linear Decreasing Weight Particle Swarm and Invasive Weed Optimization Algorithms
por: Nie, Xiaobo, et al.
Publicado: (2022) -
Longitudinal Predictive Control for Vehicle-Following Collision Avoidance in Autonomous Driving Considering Distance and Acceleration Compensation
por: Yin, Shutong, et al.
Publicado: (2022) -
Dynamic-boundary-based lateral motion synergistic control of distributed drive autonomous vehicle
por: Wang, Kai, et al.
Publicado: (2021) -
Optimal H(∞) Control for Lateral Dynamics of Autonomous Vehicles
por: Gagliardi, Gianfranco, et al.
Publicado: (2021) -
Neural Network Models for Driving Control of Indoor Autonomous Vehicles in Mobile Edge Computing
por: Kwon, Yonghun, et al.
Publicado: (2023)