Cargando…
LSTNet: A Reference-Based Learning Spectral Transformer Network for Spectral Super-Resolution
Hyperspectral images (HSIs) are data cubes containing rich spectral information, making them beneficial to many Earth observation missions. However, due to the limitations of the associated imaging systems and their sensors, such as the swath width and revisit period, hyperspectral imagery over a la...
Autores principales: | Yuan, Debao, Wu, Ling, Jiang, Huinan, Zhang, Bingrui, Li, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914896/ https://www.ncbi.nlm.nih.gov/pubmed/35271131 http://dx.doi.org/10.3390/s22051978 |
Ejemplares similares
-
Brightness Invariant Deep Spectral Super-Resolution
por: Stiebel, Tarek, et al.
Publicado: (2020) -
Spectral Super-Resolution for High Dynamic Range Images
por: Mikamoto, Yuki, et al.
Publicado: (2023) -
Spectral Representation via Data-Guided Sparsity for Hyperspectral Image Super-Resolution †
por: Han, Xian-Hua, et al.
Publicado: (2019) -
Spectrally PAINTing
a Single Chain Polymeric Nanoparticle
at Super-Resolution
por: Archontakis, Emmanouil, et al.
Publicado: (2022) -
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015)