Cargando…
Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image
Vibration dampers can greatly eliminate the galloping phenomenon of overhead transmission wires caused by wind. The detection of vibration dampers based on visual technology is an important issue. The current vibration damper detection work is mainly carried out manually. In view of the above situat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914906/ https://www.ncbi.nlm.nih.gov/pubmed/35271039 http://dx.doi.org/10.3390/s22051892 |
_version_ | 1784667871028183040 |
---|---|
author | Chen, Wenxiang Li, Yingna Zhao, Zhengang |
author_facet | Chen, Wenxiang Li, Yingna Zhao, Zhengang |
author_sort | Chen, Wenxiang |
collection | PubMed |
description | Vibration dampers can greatly eliminate the galloping phenomenon of overhead transmission wires caused by wind. The detection of vibration dampers based on visual technology is an important issue. The current vibration damper detection work is mainly carried out manually. In view of the above situation, this article proposes a vibration damper detection model named DamperYOLO based on the one-stage framework in object detection. DamperYOLO first uses a Canny operator to smooth the overexposed points of the input image and extract edge features, then selectees ResNet101 as the backbone of the framework to improve the detection speed, and finally injects edge features into backbone through an attention mechanism. At the same time, an FPN-based feature fusion network is used to provide feature maps of multiple resolutions. In addition, we built a vibration damper detection dataset named DamperDetSet based on UAV cruise images. Multiple sets of experiments on self-built DamperDetSet dataset prove that our model reaches state-of-the-art level in terms of accuracy and test speed and meets the standard of real-time output of high-accuracy test results. |
format | Online Article Text |
id | pubmed-8914906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89149062022-03-12 Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image Chen, Wenxiang Li, Yingna Zhao, Zhengang Sensors (Basel) Article Vibration dampers can greatly eliminate the galloping phenomenon of overhead transmission wires caused by wind. The detection of vibration dampers based on visual technology is an important issue. The current vibration damper detection work is mainly carried out manually. In view of the above situation, this article proposes a vibration damper detection model named DamperYOLO based on the one-stage framework in object detection. DamperYOLO first uses a Canny operator to smooth the overexposed points of the input image and extract edge features, then selectees ResNet101 as the backbone of the framework to improve the detection speed, and finally injects edge features into backbone through an attention mechanism. At the same time, an FPN-based feature fusion network is used to provide feature maps of multiple resolutions. In addition, we built a vibration damper detection dataset named DamperDetSet based on UAV cruise images. Multiple sets of experiments on self-built DamperDetSet dataset prove that our model reaches state-of-the-art level in terms of accuracy and test speed and meets the standard of real-time output of high-accuracy test results. MDPI 2022-02-28 /pmc/articles/PMC8914906/ /pubmed/35271039 http://dx.doi.org/10.3390/s22051892 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Wenxiang Li, Yingna Zhao, Zhengang Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title | Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title_full | Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title_fullStr | Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title_full_unstemmed | Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title_short | Transmission Line Vibration Damper Detection Using Deep Neural Networks Based on UAV Remote Sensing Image |
title_sort | transmission line vibration damper detection using deep neural networks based on uav remote sensing image |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914906/ https://www.ncbi.nlm.nih.gov/pubmed/35271039 http://dx.doi.org/10.3390/s22051892 |
work_keys_str_mv | AT chenwenxiang transmissionlinevibrationdamperdetectionusingdeepneuralnetworksbasedonuavremotesensingimage AT liyingna transmissionlinevibrationdamperdetectionusingdeepneuralnetworksbasedonuavremotesensingimage AT zhaozhengang transmissionlinevibrationdamperdetectionusingdeepneuralnetworksbasedonuavremotesensingimage |