Cargando…
Multi-Agent Reinforcement Learning Based Fully Decentralized Dynamic Time Division Configuration for 5G and B5G Network
Future network services must adapt to the highly dynamic uplink and downlink traffic. To fulfill this requirement, the 3rd Generation Partnership Project (3GPP) proposed dynamic time division duplex (D-TDD) technology in Long Term Evolution (LTE) Release 11. Afterward, the 3GPP RAN#86 meeting clarif...
Autores principales: | Chen, Xiangyu, Chuai, Gang, Gao, Weidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914952/ https://www.ncbi.nlm.nih.gov/pubmed/35270890 http://dx.doi.org/10.3390/s22051746 |
Ejemplares similares
-
5G Network Slicing: Methods to Support Blockchain and Reinforcement Learning
por: Hu, Juan, et al.
Publicado: (2022) -
Dynamic Set Planning for Coordinated Multi-Point in B4G/5G Networks
por: Liang, Jia-Ming, et al.
Publicado: (2021) -
A Decentralized Framework for Multi-Agent Robotic Systems
por: Jiménez, Andrés C., et al.
Publicado: (2018) -
Reinforcement Learning for Energy Optimization with 5G Communications in Vehicular Social Networks
por: Park, Hyebin, et al.
Publicado: (2020) -
The emergence of division of labour through decentralized social sanctioning
por: Yaman, Anil, et al.
Publicado: (2023)