Cargando…

Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview

Near-infrared (800–2500 nm; NIR) spectroscopy coupled to hyperspectral imaging (NIR-HSI) has greatly enhanced its capability and thus widened its application and use across various industries. This non-destructive technique that is sensitive to both physical and chemical attributes of virtually any...

Descripción completa

Detalles Bibliográficos
Autores principales: Reddy, Priyanka, Guthridge, Kathryn M., Panozzo, Joe, Ludlow, Emma J., Spangenberg, German C., Rochfort, Simone J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914962/
https://www.ncbi.nlm.nih.gov/pubmed/35271127
http://dx.doi.org/10.3390/s22051981
Descripción
Sumario:Near-infrared (800–2500 nm; NIR) spectroscopy coupled to hyperspectral imaging (NIR-HSI) has greatly enhanced its capability and thus widened its application and use across various industries. This non-destructive technique that is sensitive to both physical and chemical attributes of virtually any material can be used for both qualitative and quantitative analyses. This review describes the advancement of NIR to NIR-HSI in agricultural applications with a focus on seed quality features for agronomically important seeds. NIR-HSI seed phenotyping, describing sample sizes used for building high-accuracy calibration and prediction models for full or selected wavelengths of the NIR region, is explored. The molecular interpretation of absorbance bands in the NIR region is difficult; hence, this review offers important NIR absorbance band assignments that have been reported in literature. Opportunities for NIR-HSI seed phenotyping in forage grass seed are described and a step-by-step data-acquisition and analysis pipeline for the determination of seed quality in perennial ryegrass seeds is also presented.