Cargando…
Missing and Corrupted Data Recovery in Wireless Sensor Networks Based on Weighted Robust Principal Component Analysis
Although wireless sensor networks (WSNs) have been widely used, the existence of data loss and corruption caused by poor network conditions, sensor bandwidth, and node failure during transmission greatly affects the credibility of monitoring data. To solve this problem, this paper proposes a weighte...
Autores principales: | He, Jingfei, Li, Yunpei, Zhang, Xiaoyue, Li, Jianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914969/ https://www.ncbi.nlm.nih.gov/pubmed/35271138 http://dx.doi.org/10.3390/s22051992 |
Ejemplares similares
-
Distributed Principal Component Analysis for Wireless Sensor Networks
por: Le Borgne, Yann-Aël, et al.
Publicado: (2008) -
An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks
por: Yin, Yihang, et al.
Publicado: (2015) -
A Subspace Approach to Sparse Sampling Based Data Gathering in Wireless Sensor Networks
por: He, Jingfei, et al.
Publicado: (2020) -
Interference-Robust Transmission in Wireless Sensor Networks
por: Han, Jin-Seok, et al.
Publicado: (2016) -
Robust Data Recovery in Wireless Sensor Network: A Learning-Based Matrix Completion Framework†
por: Kortas, Manel, et al.
Publicado: (2021)