Cargando…
Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks
This research presents a brain-computer interface (BCI) framework for brain signal classification using deep learning (DL) and machine learning (ML) approaches on functional near-infrared spectroscopy (fNIRS) signals. fNIRS signals of motor execution for walking and rest tasks are acquired from the...
Autores principales: | Hamid, Huma, Naseer, Noman, Nazeer, Hammad, Khan, Muhammad Jawad, Khan, Rayyan Azam, Shahbaz Khan, Umar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914987/ https://www.ncbi.nlm.nih.gov/pubmed/35271077 http://dx.doi.org/10.3390/s22051932 |
Ejemplares similares
-
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
por: Gulraiz, Asma, et al.
Publicado: (2022) -
Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method
por: Nazeer, Hammad, et al.
Publicado: (2020) -
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review
por: Khan, Haroon, et al.
Publicado: (2021) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017)