Cargando…
Opponent control of behavior by dorsomedial striatal pathways depends on task demands and internal state
A classic view of the striatum holds that activity in direct and indirect pathways oppositely modulates motor output. Whether this involves direct control of movement, or reflects a cognitive process underlying movement, remains unresolved. Here we find that strong, opponent control of behavior by t...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915388/ https://www.ncbi.nlm.nih.gov/pubmed/35260863 http://dx.doi.org/10.1038/s41593-022-01021-9 |
Sumario: | A classic view of the striatum holds that activity in direct and indirect pathways oppositely modulates motor output. Whether this involves direct control of movement, or reflects a cognitive process underlying movement, remains unresolved. Here we find that strong, opponent control of behavior by the two pathways of the dorsomedial striatum (DMS) depends on the cognitive requirements of a task. Furthermore, a latent state model (a hidden markov model with generalized linear model observations) reveals that—even within a single task—the contribution of the two pathways to behavior is state-dependent. Specifically, the two pathways have large contributions in one of two states associated with a strategy of evidence accumulation, compared to a state associated with a strategy of repeating previous choices. Thus, both the demands imposed by a task, as well as the internal state of mice when performing a task, determine whether DMS pathways provide strong and opponent control of behavior. |
---|