Cargando…
In silico exploration of binding potentials of anti SARS-CoV-1 phytochemicals against main protease of SARS-CoV-2
The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been sh...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915462/ http://dx.doi.org/10.1016/j.jscs.2022.101453 |
Sumario: | The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been shown to display effective activity against various strains of corona viruses. In this study, we performed molecular docking studies on potential forty seven phytochemicals which are SARS-CoV-1 M(pro) inhibitors to identify potential candidate against the main proteins of SARS-CoV-2. In Silico Molecular docking studies revealed that phytochemicals 16 (Broussoflavan A), 22 (Dieckol), 31 (Hygromycin B), 45 (Sinigrin) and 46 (Theaflavin-3,3′-digallate) exhibited excellent SARS-CoV-2 M(pro) inhibitors. Furthermore, supported by Molecular dynamics (MD) simulation analysis such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg) and H-bond interaction analysis. We expect that our findings will provide designing principles for new corona virus strains and establish important frameworks for the future development of antiviral drugs. |
---|