Cargando…

Morphometric study of the ventricular indexes in healthy ovine BRAIN using MRI

BACKGROUND: Sheep (Ovis aries) have been largely used as animal models in a multitude of specialties in biomedical research. The similarity to human brain anatomy in terms of brain size, skull features, and gyrification index, gives to ovine as a large animal model a better translational value than...

Descripción completa

Detalles Bibliográficos
Autores principales: Trovatelli, Marco, Spediacci, Carlotta, Castellano, Antonella, Bernardini, Andrea, Dini, Daniele, Malfassi, Luca, Pieri, Valentina, Falini, Andrea, Ravasio, Giuliano, Riva, Marco, Bello, Lorenzo, Brizzola, Stefano, Zani, Davide Danilo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915498/
https://www.ncbi.nlm.nih.gov/pubmed/35277171
http://dx.doi.org/10.1186/s12917-022-03180-0
Descripción
Sumario:BACKGROUND: Sheep (Ovis aries) have been largely used as animal models in a multitude of specialties in biomedical research. The similarity to human brain anatomy in terms of brain size, skull features, and gyrification index, gives to ovine as a large animal model a better translational value than small animal models in neuroscience. Despite this evidence and the availability of advanced imaging techniques, morphometric brain studies are lacking. We herein present the morphometric ovine brain indexes and anatomical measures developed by two observers in a double-blinded study and validated via an intra- and inter-observer analysis. RESULTS: For this retrospective study, T1-weighted Magnetic Resonance Imaging (MRI) scans were performed at 1.5 T on 15 sheep, under general anaesthesia. The animals were female Ovis aries, in the age of 18-24 months. Two observers assessed the scans, twice time each. The statistical analysis of intra-observer and inter-observer agreement was obtained via the Bland-Altman plot and Spearman rank correlation test. The results are as follows (mean ± Standard deviation): Indexes: Bifrontal 0,338 ± 0,032 cm; Bicaudate 0,080 ± 0,012 cm; Evans’ 0,218 ± 0,035 cm; Ventricular 0,241 ± 0,039 cm; Huckman 1693 ± 0,174 cm; Cella Media 0,096 ± 0,037 cm; Third ventricle ratio 0,040 ± 0,007 cm. Anatomical measures: Fourth ventricle length 0,295 ± 0,073 cm; Fourth ventricle width 0,344 ± 0,074 cm; Left lateral ventricle 4175 ± 0,275 cm; Right lateral ventricle 4182 ± 0,269 cm; Frontal horn length 1795 ± 0,303 cm; Interventricular foramen left 1794 ± 0,301 cm; Interventricular foramen right 1,78 ± 0,317 cm. CONCLUSIONS: The present study provides baseline values of linear indexes of the ventricles in the ovine models. The acquisition of these data contributes to filling the knowledge void on important anatomical and morphological features of the sheep brain.