Cargando…
Network analytics and machine learning for predicting length of stay in elderly patients with chronic diseases at point of admission
BACKGROUND: An aging population with a burden of chronic diseases puts increasing pressure on health care systems. Early prediction of the hospital length of stay (LOS) can be useful in optimizing the allocation of medical resources, and improving healthcare quality. However, the data available at t...
Autores principales: | Hu, Zhixu, Qiu, Hang, Wang, Liya, Shen, Minghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915508/ https://www.ncbi.nlm.nih.gov/pubmed/35272654 http://dx.doi.org/10.1186/s12911-022-01802-z |
Ejemplares similares
-
Risk prediction of heart failure in patients with ischemic heart disease using network analytics and stacking ensemble learning
por: Zhou, Dejia, et al.
Publicado: (2023) -
Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients
por: Saadatmand, Sara, et al.
Publicado: (2022) -
Appropriateness of Acute Medical Admissions and Length of Stay
por: Smith, Helen E, et al.
Publicado: (1997) -
Malnutrition on admission increases the in‐hospital mortality and length of stay in elder adults with acute ischemic stroke
por: Hao, Ruixiao, et al.
Publicado: (2021) -
Length of hospital stay prior to ICU admission and outcome
por: Simpson, K, et al.
Publicado: (2011)