Cargando…

Optimization of experimental conditions for skin-PAMPA measurements

In recent years, the parallel artificial membrane permeability assay (PAMPA) has been extended for prediction of skin permeation by developing an artificial membrane which mimics the stratum corneum structure, skin-PAMPA. In the present work, the different parameters affecting skin-PAMPA permeabilit...

Descripción completa

Detalles Bibliográficos
Autores principales: Soriano-Meseguer, Sara, Fuguet, Elisabet, Port, Adriana, Rosés, Martí
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Association of Physical Chemists 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915600/
https://www.ncbi.nlm.nih.gov/pubmed/35299772
http://dx.doi.org/10.5599/admet.761
Descripción
Sumario:In recent years, the parallel artificial membrane permeability assay (PAMPA) has been extended for prediction of skin permeation by developing an artificial membrane which mimics the stratum corneum structure, skin-PAMPA. In the present work, the different parameters affecting skin-PAMPA permeability, such as incubation time and stirring, have been studied to establish ideal assay conditions to generate quality data for a screening of active pharmaceutical ingredients (API) in early stage drug discovery. Another important parameter is membrane retention, which shows dependence on lipophilicity when compounds are in their neutral form. Furthermore, the stability of the membrane has been investigated at different pH values, especially at basic pHs. Finally, a good correlation between human skin permeability and skin-PAMPA permeability, with a large dataset (n = 46), has been established. The optimized assay conditions were an incubation time of 4 hours with stirring in a pH below 8. With all these considerations the thickness of the aqueous boundary layer is decreased as much as possible and the membrane stability is guaranteed.