Cargando…
ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches
In-silico prediction of aqueous solubility plays an important role during the drug discovery and development processes. For many years, the limited performance of in-silico solubility models has been attributed to the lack of high-quality solubility data for pharmaceutical molecules. However, some s...
Autores principales: | Falcón-Cano, Gabriela, Molina, Christophe, Cabrera-Pérez, Miguel Ángel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Association of Physical Chemists
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915604/ https://www.ncbi.nlm.nih.gov/pubmed/35300309 http://dx.doi.org/10.5599/admet.852 |
Ejemplares similares
-
ADME prediction with KNIME: A retrospective contribution to the second “Solubility Challenge”
por: Falcón-Cano, Gabriela, et al.
Publicado: (2021) -
Reliable Prediction of Caco-2 Permeability by Supervised Recursive Machine Learning Approaches
por: Falcón-Cano, Gabriela, et al.
Publicado: (2022) -
Recursive Cluster Elimination based Rank Function (SVM-RCE-R) implemented in KNIME
por: Yousef, Malik, et al.
Publicado: (2021) -
KNIME essentials
por: Bakos, Gábor
Publicado: (2013) -
What's new in KNIME?
por: Meinl, Thorsten
Publicado: (2012)