Cargando…
Three machine learning models for the 2019 Solubility Challenge
We describe three machine learning models submitted to the 2019 Solubility Challenge. All are founded on tree-like classifiers, with one model being based on Random Forest and another on the related Extra Trees algorithm. The third model is a consensus predictor combining the former two with a Baggi...
Autor principal: | Mitchell, John B. O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Association of Physical Chemists
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915607/ https://www.ncbi.nlm.nih.gov/pubmed/35300305 http://dx.doi.org/10.5599/admet.835 |
Ejemplares similares
-
ADME prediction with KNIME: A retrospective contribution to the second “Solubility Challenge”
por: Falcón-Cano, Gabriela, et al.
Publicado: (2021) -
PKQuest: PBPK modeling of highly lipid soluble and extracellular solutes
por: Levitt, David G.
Publicado: (2018) -
Intraoperative thermal infrared imaging in neurosurgery: machine learning approaches for advanced segmentation of tumors
por: Cardone, Daniela, et al.
Publicado: (2023) -
Combining machine learning and texture analysis to differentiate mediastinal lymph nodes in lung cancer patients
por: Alves, Allan F. F., et al.
Publicado: (2021) -
Explainable machine learning for knee osteoarthritis diagnosis based on a novel fuzzy feature selection methodology
por: Kokkotis, Christos, et al.
Publicado: (2022)