Cargando…
Adaptive Monte Carlo augmented with normalizing flows
Many problems in the physical sciences, machine learning, and statistical inference necessitate sampling from a high-dimensional, multimodal probability distribution. Markov Chain Monte Carlo (MCMC) algorithms, the ubiquitous tool for this task, typically rely on random local updates to propagate co...
Autores principales: | Gabrié, Marylou, Rotskoff, Grant M., Vanden-Eijnden, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915891/ https://www.ncbi.nlm.nih.gov/pubmed/35235453 http://dx.doi.org/10.1073/pnas.2109420119 |
Ejemplares similares
-
Monte Carlo and Quasi-Monte Carlo Sampling
por: Lemieux, Christiane
Publicado: (2009) -
Monte Carlo and Quasi-Monte Carlo Methods 2008
por: L' Ecuyer, Pierre
Publicado: (2009) -
Fast and accurate quantum Monte Carlo for molecular crystals
por: Zen, Andrea, et al.
Publicado: (2018) -
Energy flow in jets: data vs Monte Carlo
por: Roye, B P, et al.
Publicado: (1993) -
The Monte-Carlos
por: Sjöstrand, Torbjörn
Publicado: (1993)