Cargando…
Deep learning versus iterative image reconstruction algorithm for head CT in trauma
PURPOSE: To compare the image quality between a deep learning–based image reconstruction algorithm (DLIR) and an adaptive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT. METHODS: Head CT scans from 94 consecutive trauma patients were included. Images were recon...
Autores principales: | Alagic, Zlatan, Diaz Cardenas, Jacqueline, Halldorsson, Kolbeinn, Grozman, Vitali, Wallgren, Stig, Suzuki, Chikako, Helmenkamp, Johan, Koskinen, Seppo K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917108/ https://www.ncbi.nlm.nih.gov/pubmed/34984574 http://dx.doi.org/10.1007/s10140-021-02012-2 |
Ejemplares similares
-
Ultra-low-dose CT for extremities in an acute setting: initial experience with 203 subjects
por: Alagic, Zlatan, et al.
Publicado: (2019) -
A new low-dose multi-phase trauma CT protocol and its impact on diagnostic assessment and radiation dose in multi-trauma patients
por: Alagic, Zlatan, et al.
Publicado: (2017) -
Statistical iterative reconstruction algorithm for X-ray phase-contrast CT
por: Hahn, Dieter, et al.
Publicado: (2015) -
A Novel Iterative CT Reconstruction Approach Based on FBP Algorithm
por: Shi, Hongli, et al.
Publicado: (2015) -
Imaging of penetrating thoracic trauma in a large Nordic trauma center
por: Nummela, Mari T, et al.
Publicado: (2019)