Cargando…
FAIRly big: A framework for computationally reproducible processing of large-scale data
Large-scale datasets present unique opportunities to perform scientific investigations with unprecedented breadth. However, they also pose considerable challenges for the findability, accessibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limitations, data...
Autores principales: | Wagner, Adina S., Waite, Laura K., Wierzba, Małgorzata, Hoffstaedter, Felix, Waite, Alexander Q., Poldrack, Benjamin, Eickhoff, Simon B., Hanke, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917149/ https://www.ncbi.nlm.nih.gov/pubmed/35277501 http://dx.doi.org/10.1038/s41597-022-01163-2 |
Ejemplares similares
-
Reproducible big data science: A case study in continuous FAIRness
por: Madduri, Ravi, et al.
Publicado: (2019) -
FAIRSCAPE: a Framework for FAIR and Reproducible Biomedical Analytics
por: Levinson, Maxwell Adam, et al.
Publicado: (2021) -
Correction: Reproducible big data science: A case study in continuous FAIRness
por: Madduri, Ravi, et al.
Publicado: (2023) -
A reproducible and generalizable software workflow for analysis of large-scale neuroimaging data collections using BIDS Apps
por: Zhao, Chenying, et al.
Publicado: (2023) -
Personality and local brain structure: Their shared genetic basis and reproducibility
por: Valk, Sofie L., et al.
Publicado: (2020)