Cargando…

VIB5 database with accurate ab initio quantum chemical molecular potential energy surfaces

High-level ab initio quantum chemical (QC) molecular potential energy surfaces (PESs) are crucial for accurately simulating molecular rotation-vibration spectra. Machine learning (ML) can help alleviate the cost of constructing such PESs, but requires access to the original ab initio PES data, namel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lina, Zhang, Shuang, Owens, Alec, Yurchenko, Sergei N., Dral, Pavlo O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917215/
https://www.ncbi.nlm.nih.gov/pubmed/35277513
http://dx.doi.org/10.1038/s41597-022-01185-w
Descripción
Sumario:High-level ab initio quantum chemical (QC) molecular potential energy surfaces (PESs) are crucial for accurately simulating molecular rotation-vibration spectra. Machine learning (ML) can help alleviate the cost of constructing such PESs, but requires access to the original ab initio PES data, namely potential energies computed on high-density grids of nuclear geometries. In this work, we present a new structured PES database called VIB5, which contains high-quality ab initio data on 5 small polyatomic molecules of astrophysical significance (CH(3)Cl, CH(4), SiH(4), CH(3)F, and NaOH). The VIB5 database is based on previously used PESs, which, however, are either publicly unavailable or lacking key information to make them suitable for ML applications. The VIB5 database provides tens of thousands of grid points for each molecule with theoretical best estimates of potential energies along with their constituent energy correction terms and a data-extraction script. In addition, new complementary QC calculations of energies and energy gradients have been performed to provide a consistent database, which, e.g., can be used for gradient-based ML methods.