Cargando…
How to remove or control confounds in predictive models, with applications to brain biomarkers
BACKGROUND: With increasing data sizes and more easily available computational methods, neurosciences rely more and more on predictive modeling with machine learning, e.g., to extract disease biomarkers. Yet, a successful prediction may capture a confounding effect correlated with the outcome instea...
Autores principales: | Chyzhyk, Darya, Varoquaux, Gaël, Milham, Michael, Thirion, Bertrand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917515/ https://www.ncbi.nlm.nih.gov/pubmed/35277962 http://dx.doi.org/10.1093/gigascience/giac014 |
Ejemplares similares
-
How machine learning is shaping cognitive neuroimaging
por: Varoquaux, Gael, et al.
Publicado: (2014) -
Extracting representations of cognition across neuroimaging studies improves brain decoding
por: Mensch, Arthur, et al.
Publicado: (2021) -
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
Comprehensive decoding mental processes from Web repositories of functional brain images
por: Menuet, Romuald, et al.
Publicado: (2022) -
Inter-subject Registration of Functional Images: Do We Need Anatomical Images?
por: Dohmatob, Elvis, et al.
Publicado: (2018)