Cargando…
Application of deep metric learning to molecular graph similarity
Graph based methods are increasingly important in chemistry and drug discovery, with applications ranging from QSAR to molecular generation. Combining graph neural networks and deep metric learning concepts, we expose a framework for quantifying molecular graph similarity based on distance between l...
Autores principales: | Coupry, Damien E., Pogány, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917631/ https://www.ncbi.nlm.nih.gov/pubmed/35279188 http://dx.doi.org/10.1186/s13321-022-00595-7 |
Ejemplares similares
-
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Integrating species and interactions into similarity metrics: a graph theory-based approach to understanding community similarity
por: López, Daniela N., et al.
Publicado: (2019) -
Three Journal Similarity Metrics and Their Application to Biomedical Journals
por: D′Souza, Jennifer L., et al.
Publicado: (2014) -
Metrics for graph comparison: A practitioner’s guide
por: Wills, Peter, et al.
Publicado: (2020) -
The dominant metric dimension of graphs
por: Susilowati, Liliek, et al.
Publicado: (2020)