Cargando…

Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap

Surgeons face great challenges in acquiring high-performance imaging because fluorescence probes with desired thermal stability remains rare. Here, hybrid lead sulfide/zinc sulfide quantum dots (PbS/ZnS QDs) nanostructures emitting in the long-wavelength end of the second near-infrared (NIR-IIb) win...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yimeng, Chen, Mo, Wang, Peng, Sai, Liman, Chen, Chen, Qian, Pingkang, Dong, Shixian, Feng, Sijia, Yang, Xing, Wang, Hao, Abdou, Amr M., Li, Yunxia, Chen, Shiyi, Hao, Yuefeng, Ma, Dongling, Feng, Shaoqing, Chen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917748/
https://www.ncbi.nlm.nih.gov/pubmed/35279148
http://dx.doi.org/10.1186/s12951-022-01312-0
_version_ 1784668615093518336
author Yang, Yimeng
Chen, Mo
Wang, Peng
Sai, Liman
Chen, Chen
Qian, Pingkang
Dong, Shixian
Feng, Sijia
Yang, Xing
Wang, Hao
Abdou, Amr M.
Li, Yunxia
Chen, Shiyi
Hao, Yuefeng
Ma, Dongling
Feng, Shaoqing
Chen, Jun
author_facet Yang, Yimeng
Chen, Mo
Wang, Peng
Sai, Liman
Chen, Chen
Qian, Pingkang
Dong, Shixian
Feng, Sijia
Yang, Xing
Wang, Hao
Abdou, Amr M.
Li, Yunxia
Chen, Shiyi
Hao, Yuefeng
Ma, Dongling
Feng, Shaoqing
Chen, Jun
author_sort Yang, Yimeng
collection PubMed
description Surgeons face great challenges in acquiring high-performance imaging because fluorescence probes with desired thermal stability remains rare. Here, hybrid lead sulfide/zinc sulfide quantum dots (PbS/ZnS QDs) nanostructures emitting in the long-wavelength end of the second near-infrared (NIR-IIb) window were synthesized and conjugated with Ribonuclease-A (RNase A). Such formed RNase A@PbS/ZnS QDs exhibited strong NIR IIb fluorescence and thermal stability, as supported by the photoluminescent emission assessment at different temperatures. This will allow the RNase A@PbS/ZnS QDs to provide stable fluorescence signals for long-time intraoperative imaging navigation, despite often happened, undesirable thermal accumulation in vivo. Compared to NIR-IIa fluorescence imaging, NIR-IIb vascular fluorescence imaging achieved larger penetration depth, higher signal/background ratios and nearly zero endogenous tissue autofluorescence. Moreover, these QDs illustrate the reliability during the real-time and long-time precise assessment of flap perfusion by clearly visualizing microvasculature map. These findings contribute to intraoperative imaging navigation with higher precision and lower risk. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-022-01312-0.
format Online
Article
Text
id pubmed-8917748
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-89177482022-03-21 Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap Yang, Yimeng Chen, Mo Wang, Peng Sai, Liman Chen, Chen Qian, Pingkang Dong, Shixian Feng, Sijia Yang, Xing Wang, Hao Abdou, Amr M. Li, Yunxia Chen, Shiyi Hao, Yuefeng Ma, Dongling Feng, Shaoqing Chen, Jun J Nanobiotechnology Research Surgeons face great challenges in acquiring high-performance imaging because fluorescence probes with desired thermal stability remains rare. Here, hybrid lead sulfide/zinc sulfide quantum dots (PbS/ZnS QDs) nanostructures emitting in the long-wavelength end of the second near-infrared (NIR-IIb) window were synthesized and conjugated with Ribonuclease-A (RNase A). Such formed RNase A@PbS/ZnS QDs exhibited strong NIR IIb fluorescence and thermal stability, as supported by the photoluminescent emission assessment at different temperatures. This will allow the RNase A@PbS/ZnS QDs to provide stable fluorescence signals for long-time intraoperative imaging navigation, despite often happened, undesirable thermal accumulation in vivo. Compared to NIR-IIa fluorescence imaging, NIR-IIb vascular fluorescence imaging achieved larger penetration depth, higher signal/background ratios and nearly zero endogenous tissue autofluorescence. Moreover, these QDs illustrate the reliability during the real-time and long-time precise assessment of flap perfusion by clearly visualizing microvasculature map. These findings contribute to intraoperative imaging navigation with higher precision and lower risk. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-022-01312-0. BioMed Central 2022-03-12 /pmc/articles/PMC8917748/ /pubmed/35279148 http://dx.doi.org/10.1186/s12951-022-01312-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Yang, Yimeng
Chen, Mo
Wang, Peng
Sai, Liman
Chen, Chen
Qian, Pingkang
Dong, Shixian
Feng, Sijia
Yang, Xing
Wang, Hao
Abdou, Amr M.
Li, Yunxia
Chen, Shiyi
Hao, Yuefeng
Ma, Dongling
Feng, Shaoqing
Chen, Jun
Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title_full Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title_fullStr Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title_full_unstemmed Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title_short Highly thermal stable RNase A@PbS/ZnS quantum dots as NIR-IIb image contrast for visualizing temporal changes of microvasculature remodeling in flap
title_sort highly thermal stable rnase a@pbs/zns quantum dots as nir-iib image contrast for visualizing temporal changes of microvasculature remodeling in flap
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917748/
https://www.ncbi.nlm.nih.gov/pubmed/35279148
http://dx.doi.org/10.1186/s12951-022-01312-0
work_keys_str_mv AT yangyimeng highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT chenmo highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT wangpeng highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT sailiman highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT chenchen highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT qianpingkang highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT dongshixian highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT fengsijia highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT yangxing highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT wanghao highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT abdouamrm highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT liyunxia highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT chenshiyi highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT haoyuefeng highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT madongling highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT fengshaoqing highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap
AT chenjun highlythermalstablernaseapbsznsquantumdotsasniriibimagecontrastforvisualizingtemporalchangesofmicrovasculatureremodelinginflap