Cargando…

SARS-CoV-2 gained a novel spike protein S1–N-Terminal Domain (S1-NTD)

The clue behind the SARS-CoV-2 origin is still a matter of debate. Here, we report that SARS-CoV-2 has gained a novel spike protein S1–N-terminal domain (S1-NTD). In our CLuster ANalysis of Sequences (CLANS) analysis, SARS-CoV/SARS-CoV-2 S1-NTDs displayed a close relationship with OC43 and HKU1. How...

Descripción completa

Detalles Bibliográficos
Autores principales: Desingu, Perumal Arumugam, Nagarajan, K., Dhama, Kuldeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917877/
https://www.ncbi.nlm.nih.gov/pubmed/35292244
http://dx.doi.org/10.1016/j.envres.2022.113047
Descripción
Sumario:The clue behind the SARS-CoV-2 origin is still a matter of debate. Here, we report that SARS-CoV-2 has gained a novel spike protein S1–N-terminal domain (S1-NTD). In our CLuster ANalysis of Sequences (CLANS) analysis, SARS-CoV/SARS-CoV-2 S1-NTDs displayed a close relationship with OC43 and HKU1. However, in the complete and S1-NTD-free spike protein, SARS-CoV/SARS-CoV-2 revealed closeness with MERS-CoV. Further, we have divided the S1-NTD of SARS-CoV-2 related viruses into three distinct types (Type-I to III S1-NTD) and the S1-NTD of viruses associated with SARS-CoVs into another three classes (Type-A to C S1-NTD) using CLANS and phylogenetic analyses. In particular, the results of our study indicate that SARS-CoV-2, RaTG13, and BANAL-20-52 viruses carry Type-I-S1-NTD and other SARS-CoV-2-related-bat viruses have Type-II and III. In addition, it was revealed that the Pangolin-GX and Pangolin-Guangdong lineages inherited Type-I-like and Type–II–like S1-NTD, respectively. Then our CLANS study shows the potential for evolution of Type-I and Type-III S1-NTD from SARS-CoV-related viruses Type-A and Type-B S1-NTDs, respectively. Furthermore, our analysis clarifies the possibility that Type-II S1-NTDs may have evolved from Type-A-S1-NTD of SARS-CoV-related viruses through Type-I S1-NTDs. We also observed that BANAL-20-103, BANAL-20-236, and Pangolin-Guangdong-lineage viruses containing Type–II–like S1-NTD are very close to SARS-CoV-2 in spike genetic areas other than S1-NTD. Possibly, it suggests that the common ancestor spike gene of SARS-CoV-2/RaTG13/BANAL-20-52-like virus may have evolved by recombining the Pangolin-Guangdong/BANAL-20-103/BANAL-20-236-like spike gene to Pangolin-GX-like Type-I-like-S1-NTD in the unsampled bat or undiscovered intermediate host or possibly pangolin. These may then have evolved into SARS-CoV-2, RaTG13, and BANAL-20-52 virus spike genes by host jump mediated evolution. The potential function of the novel Type-I-S1-NTD and other types of S1-NTDs needs to be studied further to understand better its importance in the ongoing COVID-19 outbreak and for future pandemic preparedness.