Cargando…
Feature screening for survival trait with application to TCGA high-dimensional genomic data
BACKGROUND: In high-dimensional survival genomic data, identifying cancer-related genes is a challenging and important subject in the field of bioinformatics. In recent years, many feature screening approaches for survival outcomes with high-dimensional survival genomic data have been developed; how...
Autores principales: | Wang, Jie-Huei, Li, Cai-Rong, Hou, Po-Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918142/ https://www.ncbi.nlm.nih.gov/pubmed/35291482 http://dx.doi.org/10.7717/peerj.13098 |
Ejemplares similares
-
Machine learning analysis of TCGA cancer data
por: Liñares-Blanco, Jose, et al.
Publicado: (2021) -
Overlapping group screening for detection of gene-environment interactions with application to TCGA high-dimensional survival genomic data
por: Wang, Jie-Huei, et al.
Publicado: (2022) -
Characterization of bidirectional gene pairs in The Cancer Genome Atlas (TCGA) dataset
por: Tu, Juchuanli, et al.
Publicado: (2019) -
Elevated CDK5R1 predicts worse prognosis in hepatocellular carcinoma based on TCGA data
por: Zeng, Zhili, et al.
Publicado: (2021) -
Mining TCGA database for gene expression in ovarian serous cystadenocarcinoma microenvironment
por: Xu, Youzheng, et al.
Publicado: (2021)