Cargando…

Does the cell number of 0PN embryos on day 3 affect pregnancy and neonatal outcomes following single blastocyst transfer?

BACKGROUND: 0PN zygotes have a low cleavage rate, and the clinical outcomes of cleavage-stage embryo transfers are unsatisfactory. Blastocyst culturing is used to screen 0PN embryos, but whether the cell number of 0PN embryos on day 3 affects the clinical outcomes following single blastocyst transfe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chen, Li, Wenzhi, Yin, Mingru, Li, Menghui, Wu, Ling, Si, Jiqiang, Zhao, Leiwen, Li, Bin, Yan, Zheng, Lyu, Qifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918324/
https://www.ncbi.nlm.nih.gov/pubmed/35279109
http://dx.doi.org/10.1186/s12884-022-04492-7
Descripción
Sumario:BACKGROUND: 0PN zygotes have a low cleavage rate, and the clinical outcomes of cleavage-stage embryo transfers are unsatisfactory. Blastocyst culturing is used to screen 0PN embryos, but whether the cell number of 0PN embryos on day 3 affects the clinical outcomes following single blastocyst transfer is unknown and would be helpful in evaluating the clinical value of these embryos. METHODS: This retrospective study compared 46,804 0PN zygotes, 242 0PN frozen-thawed single blastocyst transfers, and 92 corresponding 0PN singletons with 232,441 2PN zygotes, 3563 2PN frozen-thawed single blastocyst transfers, and 1250 2PN singletons from January 2015 to October 2019 at a tertiary-care academic medical centre. The 0PN and 2PN embryos were divided into two groups: the group with < 6 cells on day 3 and that with ≥ 6 cells. Embryo development, subsequent pregnancy and neonatal outcomes were compared between the two groups. RESULTS: The cleavage and available blastocyst rates of the 0PN zygotes were much lower than those of the 2PN zygotes (25.9% vs. 97.4%, P < 0.001; 13.9% vs. 23.4%, P < 0.001). In the < 6 cells group, the available blastocyst rate of the cleaved 0PN embryos was significantly lower than that of the 2PN embryos (2.5% vs. 12.7%, P < 0.001). However, in the ≥ 6 cells group, the available blastocyst rate of the 0PN cleaved embryos significantly improved, although it was slightly lower than that of the 2PN embryos (33.9% vs. 35.7%, P = 0.014). Importantly, compared to those of the 2PN single blastocyst transfers, the clinical pregnancy rate, live birth rate, Z-score and malformation rate of the 0PN single blastocyst transfers were not significantly different in either the < 6 cells group (30.4% vs. 39.8%, P = 0.362; 30.4% vs. 31.3%, P = 0.932; 0.89 ± 0.90 vs. 0.42 ± 1.02, P = 0.161; 0% vs. 2.6%, P = 1.000) or the ≥ 6 cells group (50.7% vs. 46.6%, P = 0.246; 39.7% vs. 38.3%, P = 0.677; 0.50 ± 1.23 vs. 0.47 ± 1.11, P = 0.861; 2.4% vs. 1.8%, P = 1.000). CONCLUSIONS: The cell number on day 3 of 0PN embryos affected the subsequent formation of blastocysts but did not influence the subsequent pregnancy and neonatal outcomes of 0PN single blastocyst transfers, which may be beneficial to clinicians counselling patients on the clinical value of 0PN embryos. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12884-022-04492-7.