Cargando…
Adaptive Fusion Based Method for Imbalanced Data Classification
The imbalance problem is widespread in real-world applications. When training a classifier on the imbalance datasets, the classifier is hard to learn an appropriate decision boundary, which causes unsatisfying classification performance. To deal with the imbalance problem, various ensemble algorithm...
Autores principales: | Liang, Zefeng, Wang, Huan, Yang, Kaixiang, Shi, Yifan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918481/ https://www.ncbi.nlm.nih.gov/pubmed/35295673 http://dx.doi.org/10.3389/fnbot.2022.827913 |
Ejemplares similares
-
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shi, Shuhao, et al.
Publicado: (2021) -
An empirical evaluation of sampling methods for the classification of imbalanced data
por: Kim, Misuk, et al.
Publicado: (2022) -
A Correction Method of a Base Classifier Applied to Imbalanced Data Classification
por: Trajdos, Pawel, et al.
Publicado: (2020) -
Research on expansion and classification of imbalanced data based on SMOTE algorithm
por: Wang, Shujuan, et al.
Publicado: (2021) -
Overlap-Based Undersampling Method for Classification of Imbalanced Medical Datasets
por: Vuttipittayamongkol, Pattaramon, et al.
Publicado: (2020)