Cargando…

Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study

STATEMENT OF THE PROBLEM: Despite topical fluoride being used for over 50 years in caries prevention, its complete potential in terms of formation of fluorapatite enamel and prolonged surface retention has not been harnessed. PURPOSE: This study aimed to assess the effectiveness of nanoparticle base...

Descripción completa

Detalles Bibliográficos
Autores principales: Raghavan, Anusha, Sukumaran, Aparna, Parangimalai Diwakar, Madan Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shiraz University of Medical Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918642/
https://www.ncbi.nlm.nih.gov/pubmed/35291680
http://dx.doi.org/10.30476/DENTJODS.2021.87895.1295
_version_ 1784668773545934848
author Raghavan, Anusha
Sukumaran, Aparna
Parangimalai Diwakar, Madan Kumar
author_facet Raghavan, Anusha
Sukumaran, Aparna
Parangimalai Diwakar, Madan Kumar
author_sort Raghavan, Anusha
collection PubMed
description STATEMENT OF THE PROBLEM: Despite topical fluoride being used for over 50 years in caries prevention, its complete potential in terms of formation of fluorapatite enamel and prolonged surface retention has not been harnessed. PURPOSE: This study aimed to assess the effectiveness of nanoparticle based acidulated phosphate fluoride (APF) gel on surface enamel fluoride uptake through split mouth design over a period of six months, on patients undergoing orthodontic treatment and indicated for bilateral extraction of premolars on at least one of the arch. MATERIALS AND METHOD: A split mouth non randomized clinical trial was performed. Each of the 30 participants received one application of 4 minutes duration of both the intervention: Right half of the mouth received nanoparticle based APF gel, and left half of the mouth received conventional APF gel (16 Oz Pascal Corp.; strawberry flavor). Bilateral acid etch biopsy of enamel surface was take at 3 intervals- baseline,24 hours and 30 days. Using 1ml of 0.5M perchloric acid, acid etch enamel biopsy was taken for all the study subjects at 3 intervals of time (baseline, 24 hours and 30 days), bilaterally on the buccal and palatal/lingual surface of maxillary or mandibular premolars indicated for extraction, using 1 (l of 0.5M perchloric acid. After the premolars were extracted, scanning electron microscope (SEM) analysis was done to determine the surface characteristics of enamel in both groups. RESULTS: Overall, both fluoride uptake and depth of biopsy remained significant even after controlling for the covariates (time, group) individually and simultaneously (p< 0.05). Further analysis showed that fluoride uptake was significantly increased and biopsy depth significantly decreased in the nanoparticle based APF gel group at 24 hour and 30 day evaluation respectively. CONCLUSION: By reducing the size of sodium fluoride to increase the surface enamel uptake, our results support the use of this top down approach as a promising strategy for effective delivery of topical fluorides. This highlights that the top down approach of nanoscience to reduce the size active compound sodium fluoride has increased the uptake and retention of surface enamel fluoride.
format Online
Article
Text
id pubmed-8918642
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Shiraz University of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-89186422022-03-14 Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study Raghavan, Anusha Sukumaran, Aparna Parangimalai Diwakar, Madan Kumar J Dent (Shiraz) Original Article STATEMENT OF THE PROBLEM: Despite topical fluoride being used for over 50 years in caries prevention, its complete potential in terms of formation of fluorapatite enamel and prolonged surface retention has not been harnessed. PURPOSE: This study aimed to assess the effectiveness of nanoparticle based acidulated phosphate fluoride (APF) gel on surface enamel fluoride uptake through split mouth design over a period of six months, on patients undergoing orthodontic treatment and indicated for bilateral extraction of premolars on at least one of the arch. MATERIALS AND METHOD: A split mouth non randomized clinical trial was performed. Each of the 30 participants received one application of 4 minutes duration of both the intervention: Right half of the mouth received nanoparticle based APF gel, and left half of the mouth received conventional APF gel (16 Oz Pascal Corp.; strawberry flavor). Bilateral acid etch biopsy of enamel surface was take at 3 intervals- baseline,24 hours and 30 days. Using 1ml of 0.5M perchloric acid, acid etch enamel biopsy was taken for all the study subjects at 3 intervals of time (baseline, 24 hours and 30 days), bilaterally on the buccal and palatal/lingual surface of maxillary or mandibular premolars indicated for extraction, using 1 (l of 0.5M perchloric acid. After the premolars were extracted, scanning electron microscope (SEM) analysis was done to determine the surface characteristics of enamel in both groups. RESULTS: Overall, both fluoride uptake and depth of biopsy remained significant even after controlling for the covariates (time, group) individually and simultaneously (p< 0.05). Further analysis showed that fluoride uptake was significantly increased and biopsy depth significantly decreased in the nanoparticle based APF gel group at 24 hour and 30 day evaluation respectively. CONCLUSION: By reducing the size of sodium fluoride to increase the surface enamel uptake, our results support the use of this top down approach as a promising strategy for effective delivery of topical fluorides. This highlights that the top down approach of nanoscience to reduce the size active compound sodium fluoride has increased the uptake and retention of surface enamel fluoride. Shiraz University of Medical Sciences 2022-03 /pmc/articles/PMC8918642/ /pubmed/35291680 http://dx.doi.org/10.30476/DENTJODS.2021.87895.1295 Text en Copyright: © Journal of Dentistry https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License, ( http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Raghavan, Anusha
Sukumaran, Aparna
Parangimalai Diwakar, Madan Kumar
Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title_full Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title_fullStr Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title_full_unstemmed Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title_short Effectiveness of Nanoparticle-Based Acidulated Phosphate Fluoride (APF) Gel on Surface Enamel Fluoride Uptake: an Interventional Study
title_sort effectiveness of nanoparticle-based acidulated phosphate fluoride (apf) gel on surface enamel fluoride uptake: an interventional study
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918642/
https://www.ncbi.nlm.nih.gov/pubmed/35291680
http://dx.doi.org/10.30476/DENTJODS.2021.87895.1295
work_keys_str_mv AT raghavananusha effectivenessofnanoparticlebasedacidulatedphosphatefluorideapfgelonsurfaceenamelfluorideuptakeaninterventionalstudy
AT sukumaranaparna effectivenessofnanoparticlebasedacidulatedphosphatefluorideapfgelonsurfaceenamelfluorideuptakeaninterventionalstudy
AT parangimalaidiwakarmadankumar effectivenessofnanoparticlebasedacidulatedphosphatefluorideapfgelonsurfaceenamelfluorideuptakeaninterventionalstudy