Cargando…
Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients
Purpose: To overcome the imaging artifacts and Hounsfield unit inaccuracy limitations of cone-beam computed tomography, a conditional generative adversarial network is proposed to synthesize high-quality computed tomography-like images from cone-beam computed tomography images. Methods: A total of 1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918752/ https://www.ncbi.nlm.nih.gov/pubmed/35262422 http://dx.doi.org/10.1177/15330338221085358 |