Cargando…
Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients
Purpose: To overcome the imaging artifacts and Hounsfield unit inaccuracy limitations of cone-beam computed tomography, a conditional generative adversarial network is proposed to synthesize high-quality computed tomography-like images from cone-beam computed tomography images. Methods: A total of 1...
Autores principales: | Zhang, Yun, Ding, Sheng-gou, Gong, Xiao-chang, Yuan, Xing-xing, Lin, Jia-fan, Chen, Qi, Li, Jin-gao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918752/ https://www.ncbi.nlm.nih.gov/pubmed/35262422 http://dx.doi.org/10.1177/15330338221085358 |
Ejemplares similares
-
CBCT-to-CT Translation Using Registration-Based Generative Adversarial Networks in Patients with Head and Neck Cancer
por: Suwanraksa, Chitchaya, et al.
Publicado: (2023) -
Conditional Progressive Generative Adversarial Network for satellite image generation
por: Cardoso, Renato, et al.
Publicado: (2022) -
Generating Synthesized Ultrasound Biomicroscopy Images from Anterior Segment Optical Coherent Tomography Images by Generative Adversarial Networks for Iridociliary Assessment
por: Ye, Hongfei, et al.
Publicado: (2022) -
Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network
por: Haubold, Johannes, et al.
Publicado: (2021) -
Dynamic controllable residual generative adversarial network for low-dose computed tomography imaging
por: Xia, Zhenyu, et al.
Publicado: (2023)