Cargando…
Bioinformatics and Machine Learning Methods to Identify FN1 as a Novel Biomarker of Aortic Valve Calcification
AIM: The purpose of this study was to identify potential diagnostic markers for aortic valve calcification (AVC) and to investigate the function of immune cell infiltration in this disease. METHODS: The AVC data sets were obtained from the Gene Expression Omnibus. The identification of differentiall...
Autores principales: | Xiong, Tao, Han, Shen, Pu, Lei, Zhang, Tian-Chen, Zhan, Xu, Fu, Tao, Dai, Ying-Hai, Li, Ya-Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8918776/ https://www.ncbi.nlm.nih.gov/pubmed/35295271 http://dx.doi.org/10.3389/fcvm.2022.832591 |
Ejemplares similares
-
Development and analysis of a comprehensive diagnostic model for aortic valve calcification using machine learning methods and artificial neural networks
por: Xiong, Tao, et al.
Publicado: (2022) -
Potential ferroptosis key genes in calcific aortic valve disease
por: Li, Xiong-Zhi, et al.
Publicado: (2022) -
NOTCH Signaling in Aortic Valve Development and Calcific Aortic Valve Disease
por: Wang, Yidong, et al.
Publicado: (2021) -
Organ Culture Model of Aortic Valve Calcification
por: Chester, Adrian H., et al.
Publicado: (2021) -
Multi-omics of in vitro aortic valve calcification
por: Semenova, Daria, et al.
Publicado: (2022)