Cargando…

Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows

We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919050/
https://www.ncbi.nlm.nih.gov/pubmed/35295683
http://dx.doi.org/10.3389/fdata.2022.803685
_version_ 1784668869259952128
author Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
author_facet Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
author_sort Jawahar, Pratik
collection PubMed
description We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder.
format Online
Article
Text
id pubmed-8919050
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89190502022-03-15 Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows Jawahar, Pratik Aarrestad, Thea Chernyavskaya, Nadezda Pierini, Maurizio Wozniak, Kinga A. Ngadiuba, Jennifer Duarte, Javier Tsan, Steven Front Big Data Big Data We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder. Frontiers Media S.A. 2022-02-28 /pmc/articles/PMC8919050/ /pubmed/35295683 http://dx.doi.org/10.3389/fdata.2022.803685 Text en Copyright © 2022 Jawahar, Aarrestad, Chernyavskaya, Pierini, Wozniak, Ngadiuba, Duarte and Tsan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Big Data
Jawahar, Pratik
Aarrestad, Thea
Chernyavskaya, Nadezda
Pierini, Maurizio
Wozniak, Kinga A.
Ngadiuba, Jennifer
Duarte, Javier
Tsan, Steven
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title_full Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title_fullStr Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title_full_unstemmed Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title_short Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
title_sort improving variational autoencoders for new physics detection at the lhc with normalizing flows
topic Big Data
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919050/
https://www.ncbi.nlm.nih.gov/pubmed/35295683
http://dx.doi.org/10.3389/fdata.2022.803685
work_keys_str_mv AT jawaharpratik improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT aarrestadthea improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT chernyavskayanadezda improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT pierinimaurizio improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT wozniakkingaa improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT ngadiubajennifer improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT duartejavier improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows
AT tsansteven improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows