Cargando…
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919050/ https://www.ncbi.nlm.nih.gov/pubmed/35295683 http://dx.doi.org/10.3389/fdata.2022.803685 |
_version_ | 1784668869259952128 |
---|---|
author | Jawahar, Pratik Aarrestad, Thea Chernyavskaya, Nadezda Pierini, Maurizio Wozniak, Kinga A. Ngadiuba, Jennifer Duarte, Javier Tsan, Steven |
author_facet | Jawahar, Pratik Aarrestad, Thea Chernyavskaya, Nadezda Pierini, Maurizio Wozniak, Kinga A. Ngadiuba, Jennifer Duarte, Javier Tsan, Steven |
author_sort | Jawahar, Pratik |
collection | PubMed |
description | We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder. |
format | Online Article Text |
id | pubmed-8919050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89190502022-03-15 Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows Jawahar, Pratik Aarrestad, Thea Chernyavskaya, Nadezda Pierini, Maurizio Wozniak, Kinga A. Ngadiuba, Jennifer Duarte, Javier Tsan, Steven Front Big Data Big Data We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event representations, anomaly score definitions, network architectures) affect the result on specific benchmark new physics models. Once a baseline is established, we discuss how to improve the anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational autoencoder. Frontiers Media S.A. 2022-02-28 /pmc/articles/PMC8919050/ /pubmed/35295683 http://dx.doi.org/10.3389/fdata.2022.803685 Text en Copyright © 2022 Jawahar, Aarrestad, Chernyavskaya, Pierini, Wozniak, Ngadiuba, Duarte and Tsan. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Big Data Jawahar, Pratik Aarrestad, Thea Chernyavskaya, Nadezda Pierini, Maurizio Wozniak, Kinga A. Ngadiuba, Jennifer Duarte, Javier Tsan, Steven Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title | Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title_full | Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title_fullStr | Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title_full_unstemmed | Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title_short | Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows |
title_sort | improving variational autoencoders for new physics detection at the lhc with normalizing flows |
topic | Big Data |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919050/ https://www.ncbi.nlm.nih.gov/pubmed/35295683 http://dx.doi.org/10.3389/fdata.2022.803685 |
work_keys_str_mv | AT jawaharpratik improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT aarrestadthea improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT chernyavskayanadezda improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT pierinimaurizio improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT wozniakkingaa improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT ngadiubajennifer improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT duartejavier improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows AT tsansteven improvingvariationalautoencodersfornewphysicsdetectionatthelhcwithnormalizingflows |