Cargando…
Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
We investigate how to improve new physics detection strategies exploiting variational autoencoders and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example, we consider the DarkMachines challenge dataset. We show how different design choices (e.g., event represe...
Autores principales: | Jawahar, Pratik, Aarrestad, Thea, Chernyavskaya, Nadezda, Pierini, Maurizio, Wozniak, Kinga A., Ngadiuba, Jennifer, Duarte, Javier, Tsan, Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919050/ https://www.ncbi.nlm.nih.gov/pubmed/35295683 http://dx.doi.org/10.3389/fdata.2022.803685 |
Ejemplares similares
-
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
por: Jawahar, Pratik, et al.
Publicado: (2021) -
Variational Autoencoder Modular Bayesian Networks for Simulation of Heterogeneous Clinical Study Data
por: Gootjes-Dreesbach, Luise, et al.
Publicado: (2020) -
LHC physics dataset for unsupervised New Physics detection at 40 MHz
por: Govorkova, Ekaterina, et al.
Publicado: (2022) -
Particle-based Fast Jet Simulation at the LHC with Variational Autoencoders
por: Touranakou, Mary, et al.
Publicado: (2022) -
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
por: Iiyama, Yutaro, et al.
Publicado: (2021)