Cargando…
A hybrid machine learning/deep learning COVID-19 severity predictive model from CT images and clinical data
COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning model to classify patients in two outcome categories, non-IC...
Autores principales: | Chieregato, Matteo, Frangiamore, Fabio, Morassi, Mauro, Baresi, Claudia, Nici, Stefania, Bassetti, Chiara, Bnà, Claudio, Galelli, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919158/ https://www.ncbi.nlm.nih.gov/pubmed/35288579 http://dx.doi.org/10.1038/s41598-022-07890-1 |
Ejemplares similares
-
SARS-CoV-2-related encephalitis with prominent parkinsonism: clinical and FDG-PET correlates in two patients
por: Morassi, Mauro, et al.
Publicado: (2021) -
Stroke in patients with COVID-19: Clinical and neuroimaging characteristics
por: Vogrig, Alberto, et al.
Publicado: (2021) -
Dural Metastases of Advanced Prostate Cancer Detected by (18)F-Fluorocholine
por: Morassi, Mauro, et al.
Publicado: (2020) -
Bilateral carotid artery dissection in a SARS-CoV-2 infected patient: causality or coincidence?
por: Morassi, Mauro, et al.
Publicado: (2020) -
Hybrid Deep-Learning and Machine-Learning Models for Predicting COVID-19
por: Qaid, Talal S., et al.
Publicado: (2021)