Cargando…
Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae)
Ants are highly diverse social insects living in colonies consisted of up to millions of individuals with reproductive division of labors. Due to the interests in disclosing the genetic and epigenetic regulation mechanisms underlying the distinct developmental trajectories between castes and divisio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919206/ https://www.ncbi.nlm.nih.gov/pubmed/35295570 http://dx.doi.org/10.3389/fphys.2022.852357 |
_version_ | 1784668902910853120 |
---|---|
author | Ding, Guo Gao, Qionghua Chen, Jun Zhao, Jie Zhang, Guojie Liu, Weiwei |
author_facet | Ding, Guo Gao, Qionghua Chen, Jun Zhao, Jie Zhang, Guojie Liu, Weiwei |
author_sort | Ding, Guo |
collection | PubMed |
description | Ants are highly diverse social insects living in colonies consisted of up to millions of individuals with reproductive division of labors. Due to the interests in disclosing the genetic and epigenetic regulation mechanisms underlying the distinct developmental trajectories between castes and division of labor in colonies, many ant species have recently been established as laboratory models for evolutionary development and social behavior studies. These functional studies often request a precise quantification of the relative gene expression level, which relies on a stably expressed reference genes for normalization. A core set of reliable reference genes for this purpose however has not been established yet in ants. In the present study, we tested the expression patterns and amplification efficiencies of 12 abundantly expressed candidate genes in Monomorium pharaonis, one of the few ant species that are suitable for laboratory rearing and experimentation. We quantified the expression levels of these genes by RT-qPCR in seven different conditions: embryo development, sexual development, worker development, adult phenotypes, tissues, and two abiotic manipulative treatments in pharaoh ant. Finally, five genes, elongation factor-1 alpha (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), TATA-box-binding protein (TATA), tubulin gamma-2 chain-like (TBLg2), heat shock protein 67B2-like (HSP67) were found to be the most stable reference genes across seven conditions. We also identified the most stable reference genes applicable for each distinct condition and the optimal number of reference genes entailed were evaluated. Our study validates reliable reference genes for RT-qPCR analysis which lays the foundation for future studies in pharaoh ant. |
format | Online Article Text |
id | pubmed-8919206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89192062022-03-15 Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) Ding, Guo Gao, Qionghua Chen, Jun Zhao, Jie Zhang, Guojie Liu, Weiwei Front Physiol Physiology Ants are highly diverse social insects living in colonies consisted of up to millions of individuals with reproductive division of labors. Due to the interests in disclosing the genetic and epigenetic regulation mechanisms underlying the distinct developmental trajectories between castes and division of labor in colonies, many ant species have recently been established as laboratory models for evolutionary development and social behavior studies. These functional studies often request a precise quantification of the relative gene expression level, which relies on a stably expressed reference genes for normalization. A core set of reliable reference genes for this purpose however has not been established yet in ants. In the present study, we tested the expression patterns and amplification efficiencies of 12 abundantly expressed candidate genes in Monomorium pharaonis, one of the few ant species that are suitable for laboratory rearing and experimentation. We quantified the expression levels of these genes by RT-qPCR in seven different conditions: embryo development, sexual development, worker development, adult phenotypes, tissues, and two abiotic manipulative treatments in pharaoh ant. Finally, five genes, elongation factor-1 alpha (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), TATA-box-binding protein (TATA), tubulin gamma-2 chain-like (TBLg2), heat shock protein 67B2-like (HSP67) were found to be the most stable reference genes across seven conditions. We also identified the most stable reference genes applicable for each distinct condition and the optimal number of reference genes entailed were evaluated. Our study validates reliable reference genes for RT-qPCR analysis which lays the foundation for future studies in pharaoh ant. Frontiers Media S.A. 2022-02-28 /pmc/articles/PMC8919206/ /pubmed/35295570 http://dx.doi.org/10.3389/fphys.2022.852357 Text en Copyright © 2022 Ding, Gao, Chen, Zhao, Zhang and Liu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Ding, Guo Gao, Qionghua Chen, Jun Zhao, Jie Zhang, Guojie Liu, Weiwei Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title | Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title_full | Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title_fullStr | Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title_full_unstemmed | Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title_short | Validation of Potential Reference Genes for Real-Time qPCR Analysis in Pharaoh Ant, Monomorium pharaonis (Hymenoptera: Formicidae) |
title_sort | validation of potential reference genes for real-time qpcr analysis in pharaoh ant, monomorium pharaonis (hymenoptera: formicidae) |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919206/ https://www.ncbi.nlm.nih.gov/pubmed/35295570 http://dx.doi.org/10.3389/fphys.2022.852357 |
work_keys_str_mv | AT dingguo validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae AT gaoqionghua validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae AT chenjun validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae AT zhaojie validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae AT zhangguojie validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae AT liuweiwei validationofpotentialreferencegenesforrealtimeqpcranalysisinpharaohantmonomoriumpharaonishymenopteraformicidae |