Cargando…

Molecular landscape of IDH-mutant astrocytoma and oligodendroglioma grade 2 indicate tumor purity as an underlying genomic factor

BACKGROUND: IDH-mutant astrocytoma and oligodendroglioma have an indolent natural history and are recognized as distinct entities of neoplasms. There is little knowledge on the molecular differences between IDH-mutant astrocytoma and oligodendroglioma grade 2. Therefore, we investigated the multiomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Binghao, Xia, Yu, Yang, Fengchun, Wang, Yaning, Wang, Yuekun, Wang, Yadong, Dai, Congxin, Wang, Yu, Ma, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919570/
https://www.ncbi.nlm.nih.gov/pubmed/35287567
http://dx.doi.org/10.1186/s10020-022-00454-z
Descripción
Sumario:BACKGROUND: IDH-mutant astrocytoma and oligodendroglioma have an indolent natural history and are recognized as distinct entities of neoplasms. There is little knowledge on the molecular differences between IDH-mutant astrocytoma and oligodendroglioma grade 2. Therefore, we investigated the multiomics and clinical data regarding these two types of tumors. METHOD: In silico analyses were performed around mRNA, somatic mutations, copy number alternations (CNAs), DNA methylation, microRNA (miRNA), epigenetics, immune microenvironment characterization and clinical features of the two types of gliomas. A diagnostic model incorporating tumor purity was further established using machine learning algorithms, and the predictive value was evaluated by receiver operative characteristic curves. RESULTS: Both types of gliomas shared chromosomal instability, and astrocytomas exhibited increased total CNAs compared to oligodendrogliomas. Oligodendrogliomas displayed distinct chromosome 4 (chr 4) loss, and subtyping of chr 7 gain/chr 4 loss (+ 7/− 4) presented the worst survival (P = 0.004) and progression-free interval (PFI) (P < 0.001). In DNA damage signatures, oligodendroglioma had a higher subclonal genome fraction (P < 0.001) and tumor purity (P = 0.001), and astrocytoma had a higher aneuploidy score (P < 0.001). Furthermore, astrocytomas exhibited inflamed immune cell infiltration, activated T cells and a potential response to immune checkpoint inhibitors (ICIs), while oligodendrogliomas were more homogeneous with increased tumor purity and decreased aggression. The tumor purity-involved diagnostic model exhibited great accuracy in identifying astrocytoma and oligodendroglioma. CONCLUSION: This study addresses the similarities and differences between IDH-mutant astrocytoma and oligodendroglioma grade 2 and facilitates a deeper understanding of their molecular features, immune microenvironment, tumor purity and prognosis. The diagnostic tool developed using machine learning may offer support for clinical decisions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10020-022-00454-z.