Cargando…
Effects of propofol on neuroblastoma cells via the HOTAIRM1/miR-519a-3p axis
BACKGROUND: Propofol, an intravenous sedative-hypnotic agent, is demonstrated to have antioxidant properties. The purpose of this study is to investigate the functional roles of propofol in neuroblastoma cells. METHODS: The proliferation and apoptosis were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919833/ https://www.ncbi.nlm.nih.gov/pubmed/35350655 http://dx.doi.org/10.1515/tnsci-2022-0212 |
Sumario: | BACKGROUND: Propofol, an intravenous sedative-hypnotic agent, is demonstrated to have antioxidant properties. The purpose of this study is to investigate the functional roles of propofol in neuroblastoma cells. METHODS: The proliferation and apoptosis were assessed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT), EdU, and flow cytometry assays, respectively. The protein expression level was quantified by western blot assay. Inflammation and oxidative stress were determined by measuring the release of inflammatory factors, along with intracellular reactive oxygen species (ROS), lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. The real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to assess the expression levels of HOXA transcript antisense RNA, myeloid-specific 1 (HOTAIRM1), and miR-519a-3p in cells. The interaction relationship between HOTAIRM1 and miR-519a-3p was confirmed by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. RESULTS: Treatment with MPP(+) has been observed to induce apoptosis, oxidative stress, and inflammation in neuroblastoma cells, which were abolished by propofol or silencing of HOTAIRM1. Importantly, the increase of HOTAIRM1 and the decrease of miR-519a-3p caused by MPP(+) were reversed by propofol in neuroblastoma cells. In addition, miR-519a-3p was a target of HOTAIRM1, and inhibition of miR-519a-3p abolished HOTAIRM1 silencing-induced effects on neuroblastoma cells. Moreover, functional experiments revealed that propofol might weaken MPP(+)-induced apoptosis, oxidative stress, and inflammation by regulating the HOTAIRM1/miR-519a-3p axis. CONCLUSION: Propofol inhibited oxidative stress and inflammation in MPP(+)-induced neuroblastoma cells by targeting the HOTAIRM1/miR-519a-3p axis, implying the potential protective function of propofol against oxidative damage. |
---|