Cargando…

Self-Esteem at University: Proposal of an Artificial Neural Network Based on Resilience, Stress, and Sociodemographic Variables

Artificial intelligence (AI) is a useful predictive tool for a wide variety of fields of knowledge. Despite this, the educational field is still an environment that lacks a variety of studies that use this type of predictive tools. In parallel, it is postulated that the levels of self-esteem in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Martínez-Ramón, Juan Pedro, Morales-Rodríguez, Francisco Manuel, Ruiz-Esteban, Cecilia, Méndez, Inmaculada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919981/
https://www.ncbi.nlm.nih.gov/pubmed/35295381
http://dx.doi.org/10.3389/fpsyg.2022.815853
Descripción
Sumario:Artificial intelligence (AI) is a useful predictive tool for a wide variety of fields of knowledge. Despite this, the educational field is still an environment that lacks a variety of studies that use this type of predictive tools. In parallel, it is postulated that the levels of self-esteem in the university environment may be related to the strategies implemented to solve problems. For these reasons, the aim of this study was to analyze the levels of self-esteem presented by teaching staff and students at university (N = 290, 73.1% female) and to design an algorithm capable of predicting these levels on the basis of their coping strategies, resilience, and sociodemographic variables. For this purpose, the Rosenberg Self-Esteem Scale (RSES), the Perceived Stress Scale (PSS), and the Brief Resilience Scale were administered. The results showed a relevant role of resilience and stress perceived in predicting participants’ self-esteem levels. The findings highlight the usefulness of artificial neural networks for predicting psychological variables in education.