Cargando…

Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods

The current global health emergency in the form of the Coronavirus 2019 (COVID-19) pandemic has highlighted the need for fast, accurate, and efficient drug discovery pipelines. Traditional drug discovery projects relying on in vitro high-throughput screening (HTS) involve large investments and sophi...

Descripción completa

Detalles Bibliográficos
Autores principales: Choudhury, Chinmayee, Arul Murugan, N., Priyakumar, U. Deva
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920090/
https://www.ncbi.nlm.nih.gov/pubmed/35301148
http://dx.doi.org/10.1016/j.drudis.2022.03.006
Descripción
Sumario:The current global health emergency in the form of the Coronavirus 2019 (COVID-19) pandemic has highlighted the need for fast, accurate, and efficient drug discovery pipelines. Traditional drug discovery projects relying on in vitro high-throughput screening (HTS) involve large investments and sophisticated experimental set-ups, affordable only to big biopharmaceutical companies. In this scenario, application of efficient state-of-the-art computational methods and modern artificial intelligence (AI)-based algorithms for rapid screening of repurposable chemical space [approved drugs and natural products (NPs) with proven pharmacokinetic profiles] to identify the initial leads is a powerful option to save resources and time. Structure-based drug repurposing is a popular in silico repurposing approach. In this review, we discuss traditional and modern AI-based computational methods and tools applied at various stages for structure-based drug discovery (SBDD) pipelines. Additionally, we highlight the role of generative models in generating molecules with scaffolds from repurposable chemical space.