Cargando…
ADME prediction with KNIME: A retrospective contribution to the second “Solubility Challenge”
Computational models for predicting aqueous solubility from the molecular structure represent a promising strategy from the perspective of drug design and discovery. Since the first “Solubility Challenge”, these initiatives have marked the state-of-art of the modelling algorithms used to predict dru...
Autores principales: | Falcón-Cano, Gabriela, Molina, Christophe, Cabrera-Pérez, Miguel Ángel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Association of Physical Chemists
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920098/ https://www.ncbi.nlm.nih.gov/pubmed/35300359 http://dx.doi.org/10.5599/admet.979 |
Ejemplares similares
-
ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches
por: Falcón-Cano, Gabriela, et al.
Publicado: (2020) -
Reliable Prediction of Caco-2 Permeability by Supervised Recursive Machine Learning Approaches
por: Falcón-Cano, Gabriela, et al.
Publicado: (2022) -
KNIME essentials
por: Bakos, Gábor
Publicado: (2013) -
Five Years of the KNIME Vernalis Cheminformatics Community Contribution
por: Roughley, Stephen D.
Publicado: (2020) -
What's new in KNIME?
por: Meinl, Thorsten
Publicado: (2012)