Cargando…

Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure

Freeway networks are vulnerable to natural disasters and man-made disruptions. The closure of one or more toll stations of the network often causes a sharp decrease in freeway performance. Therefore, measuring the probability and consequences of vulnerability to identify critical parts in the networ...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jinqiang, Huang, Hainan, Cheng, Yanqiu, Chen, Kuanmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920282/
https://www.ncbi.nlm.nih.gov/pubmed/35286346
http://dx.doi.org/10.1371/journal.pone.0265260
_version_ 1784669094682820608
author Xu, Jinqiang
Huang, Hainan
Cheng, Yanqiu
Chen, Kuanmin
author_facet Xu, Jinqiang
Huang, Hainan
Cheng, Yanqiu
Chen, Kuanmin
author_sort Xu, Jinqiang
collection PubMed
description Freeway networks are vulnerable to natural disasters and man-made disruptions. The closure of one or more toll stations of the network often causes a sharp decrease in freeway performance. Therefore, measuring the probability and consequences of vulnerability to identify critical parts in the network is crucial for road emergency management. Most existing techniques only measure the consequences of node closure and rarely consider the probability of node closure owing to the lack of an extensive historical database; moreover, they ignore highways outside the study area, which can lead to errors in topological analysis and traffic distribution. Furthermore, the negative effects produced by the operation of freeway tunnels in vulnerability assessment have been neglected. In this study, a framework for freeway vulnerability assessment that considers both the probability and consequences of vulnerability is proposed, based on the perspective of network cascade failure analysis. The cascade failure analysis is conducted using an improved coupled map lattice model, developed by considering the negative effects of tunnels and optimizing the rules of local traffic redistribution. The perturbation threshold and propagation time step of network cascade failure are captured to reflect the probabilities and consequences of vulnerability. A nodal vulnerability index is established based on risk assessment, and a hierarchical clustering method is used to identify the vulnerability classification of critical nodes. The freeway network of Fuzhou in China is utilized to demonstrate the effectiveness of the proposed approach. Specifically, the toll stations in the study area are classified into five clusters of vulnerability: extremely high, high, medium, low, and extremely low. Approximately 31% of the toll stations were classified as the high or extremely high cluster, and three extremely vulnerable freeway sections requiring different precautions were identified. The proposed network vulnerability analysis method provides a new perspective to examine the vulnerability of freeway networks.
format Online
Article
Text
id pubmed-8920282
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89202822022-03-15 Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure Xu, Jinqiang Huang, Hainan Cheng, Yanqiu Chen, Kuanmin PLoS One Research Article Freeway networks are vulnerable to natural disasters and man-made disruptions. The closure of one or more toll stations of the network often causes a sharp decrease in freeway performance. Therefore, measuring the probability and consequences of vulnerability to identify critical parts in the network is crucial for road emergency management. Most existing techniques only measure the consequences of node closure and rarely consider the probability of node closure owing to the lack of an extensive historical database; moreover, they ignore highways outside the study area, which can lead to errors in topological analysis and traffic distribution. Furthermore, the negative effects produced by the operation of freeway tunnels in vulnerability assessment have been neglected. In this study, a framework for freeway vulnerability assessment that considers both the probability and consequences of vulnerability is proposed, based on the perspective of network cascade failure analysis. The cascade failure analysis is conducted using an improved coupled map lattice model, developed by considering the negative effects of tunnels and optimizing the rules of local traffic redistribution. The perturbation threshold and propagation time step of network cascade failure are captured to reflect the probabilities and consequences of vulnerability. A nodal vulnerability index is established based on risk assessment, and a hierarchical clustering method is used to identify the vulnerability classification of critical nodes. The freeway network of Fuzhou in China is utilized to demonstrate the effectiveness of the proposed approach. Specifically, the toll stations in the study area are classified into five clusters of vulnerability: extremely high, high, medium, low, and extremely low. Approximately 31% of the toll stations were classified as the high or extremely high cluster, and three extremely vulnerable freeway sections requiring different precautions were identified. The proposed network vulnerability analysis method provides a new perspective to examine the vulnerability of freeway networks. Public Library of Science 2022-03-14 /pmc/articles/PMC8920282/ /pubmed/35286346 http://dx.doi.org/10.1371/journal.pone.0265260 Text en © 2022 Xu et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Xu, Jinqiang
Huang, Hainan
Cheng, Yanqiu
Chen, Kuanmin
Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title_full Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title_fullStr Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title_full_unstemmed Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title_short Vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
title_sort vulnerability assessment of freeway network considering the probabilities and consequences from a perspective based on network cascade failure
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920282/
https://www.ncbi.nlm.nih.gov/pubmed/35286346
http://dx.doi.org/10.1371/journal.pone.0265260
work_keys_str_mv AT xujinqiang vulnerabilityassessmentoffreewaynetworkconsideringtheprobabilitiesandconsequencesfromaperspectivebasedonnetworkcascadefailure
AT huanghainan vulnerabilityassessmentoffreewaynetworkconsideringtheprobabilitiesandconsequencesfromaperspectivebasedonnetworkcascadefailure
AT chengyanqiu vulnerabilityassessmentoffreewaynetworkconsideringtheprobabilitiesandconsequencesfromaperspectivebasedonnetworkcascadefailure
AT chenkuanmin vulnerabilityassessmentoffreewaynetworkconsideringtheprobabilitiesandconsequencesfromaperspectivebasedonnetworkcascadefailure