Cargando…
Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification
PURPOSE: Automatic outlining of different tissue types in digitized histological specimen provides a basis for follow-up analyses and can potentially guide subsequent medical decisions. The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of computation time. In this re...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920491/ https://www.ncbi.nlm.nih.gov/pubmed/35300344 http://dx.doi.org/10.1117/1.JMI.9.2.027501 |
_version_ | 1784669138817384448 |
---|---|
author | Wilm, Frauke Benz, Michaela Bruns, Volker Baghdadlian, Serop Dexl, Jakob Hartmann, David Kuritcyn, Petr Weidenfeller, Martin Wittenberg, Thomas Merkel, Susanne Hartmann, Arndt Eckstein, Markus Geppert, Carol Immanuel |
author_facet | Wilm, Frauke Benz, Michaela Bruns, Volker Baghdadlian, Serop Dexl, Jakob Hartmann, David Kuritcyn, Petr Weidenfeller, Martin Wittenberg, Thomas Merkel, Susanne Hartmann, Arndt Eckstein, Markus Geppert, Carol Immanuel |
author_sort | Wilm, Frauke |
collection | PubMed |
description | PURPOSE: Automatic outlining of different tissue types in digitized histological specimen provides a basis for follow-up analyses and can potentially guide subsequent medical decisions. The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of computation time. In this regard, the analysis of nonoverlapping patches outperforms pixelwise segmentation approaches but still leaves room for optimization. Furthermore, the division into patches, regardless of the biological structures they contain, is a drawback due to the loss of local dependencies. APPROACH: We propose to subdivide the WSI into coherent regions prior to classification by grouping visually similar adjacent pixels into superpixels. Afterward, only a random subset of patches per superpixel is classified and patch labels are combined into a superpixel label. We propose a metric for identifying superpixels with an uncertain classification and evaluate two medical applications, namely tumor area and invasive margin estimation and tumor composition analysis. RESULTS: The algorithm has been developed on 159 hand-annotated WSIs of colon resections and its performance is compared with an analysis without prior segmentation. The algorithm shows an average speed-up of 41% and an increase in accuracy from 93.8% to 95.7%. By assigning a rejection label to uncertain superpixels, we further increase the accuracy by 0.4%. While tumor area estimation shows high concordance to the annotated area, the analysis of tumor composition highlights limitations of our approach. CONCLUSION: By combining superpixel segmentation and patch classification, we designed a fast and accurate framework for whole-slide cartography that is AI-model agnostic and provides the basis for various medical endpoints. |
format | Online Article Text |
id | pubmed-8920491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-89204912023-03-14 Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification Wilm, Frauke Benz, Michaela Bruns, Volker Baghdadlian, Serop Dexl, Jakob Hartmann, David Kuritcyn, Petr Weidenfeller, Martin Wittenberg, Thomas Merkel, Susanne Hartmann, Arndt Eckstein, Markus Geppert, Carol Immanuel J Med Imaging (Bellingham) Digital Pathology PURPOSE: Automatic outlining of different tissue types in digitized histological specimen provides a basis for follow-up analyses and can potentially guide subsequent medical decisions. The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of computation time. In this regard, the analysis of nonoverlapping patches outperforms pixelwise segmentation approaches but still leaves room for optimization. Furthermore, the division into patches, regardless of the biological structures they contain, is a drawback due to the loss of local dependencies. APPROACH: We propose to subdivide the WSI into coherent regions prior to classification by grouping visually similar adjacent pixels into superpixels. Afterward, only a random subset of patches per superpixel is classified and patch labels are combined into a superpixel label. We propose a metric for identifying superpixels with an uncertain classification and evaluate two medical applications, namely tumor area and invasive margin estimation and tumor composition analysis. RESULTS: The algorithm has been developed on 159 hand-annotated WSIs of colon resections and its performance is compared with an analysis without prior segmentation. The algorithm shows an average speed-up of 41% and an increase in accuracy from 93.8% to 95.7%. By assigning a rejection label to uncertain superpixels, we further increase the accuracy by 0.4%. While tumor area estimation shows high concordance to the annotated area, the analysis of tumor composition highlights limitations of our approach. CONCLUSION: By combining superpixel segmentation and patch classification, we designed a fast and accurate framework for whole-slide cartography that is AI-model agnostic and provides the basis for various medical endpoints. Society of Photo-Optical Instrumentation Engineers 2022-03-14 2022-03 /pmc/articles/PMC8920491/ /pubmed/35300344 http://dx.doi.org/10.1117/1.JMI.9.2.027501 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | Digital Pathology Wilm, Frauke Benz, Michaela Bruns, Volker Baghdadlian, Serop Dexl, Jakob Hartmann, David Kuritcyn, Petr Weidenfeller, Martin Wittenberg, Thomas Merkel, Susanne Hartmann, Arndt Eckstein, Markus Geppert, Carol Immanuel Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title | Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title_full | Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title_fullStr | Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title_full_unstemmed | Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title_short | Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification |
title_sort | fast whole-slide cartography in colon cancer histology using superpixels and cnn classification |
topic | Digital Pathology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920491/ https://www.ncbi.nlm.nih.gov/pubmed/35300344 http://dx.doi.org/10.1117/1.JMI.9.2.027501 |
work_keys_str_mv | AT wilmfrauke fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT benzmichaela fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT brunsvolker fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT baghdadlianserop fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT dexljakob fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT hartmanndavid fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT kuritcynpetr fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT weidenfellermartin fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT wittenbergthomas fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT merkelsusanne fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT hartmannarndt fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT ecksteinmarkus fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification AT geppertcarolimmanuel fastwholeslidecartographyincoloncancerhistologyusingsuperpixelsandcnnclassification |