Cargando…
Breakdancing Movement Based on Image Recognition Promotes Preschool Children's Executive Function and Intervention Plan
With the continuous development of science and technology, people can apply more and more technology to the cultivation of children's abilities. In the process of cultivating children's ability, the most fancy is the study of executive function, and this is the research topic of this artic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920643/ https://www.ncbi.nlm.nih.gov/pubmed/35295201 http://dx.doi.org/10.1155/2022/1991138 |
Sumario: | With the continuous development of science and technology, people can apply more and more technology to the cultivation of children's abilities. In the process of cultivating children's ability, the most fancy is the study of executive function, and this is the research topic of this article. In the past, training methods such as music, mindfulness, and exercise have been used in the study of children's executive abilities to promote the development of preschool children's executive functions. While various approaches have had some effect, researchers have been exploring more comprehensive approaches to effective training. This article is aimed at studying how to use image recognition technology to conduct an intervention analysis of breakdancing in promoting the executive function of preschool children. For this reason, this paper proposes image recognition technology based on deep learning neural network and conducts research, analysis, and improvement on related technologies obtained from deep learning. This makes it more suitable for the research topic of this article and design-related experiments and analysis to explore its related performance. The experimental results in this paper show that the improved image recognition technology has improved accuracy by 31.2%. And the performance of its algorithm is also improved by 21%, which can be very effective in monitoring preschool children during breakdancing. |
---|