Cargando…

Electric load forecasting based on Long-Short-Term-Memory network via simplex optimizer during COVID-19

Electric load forecasting is a challenging research, which is of great significance to the safe and stable operation of power grid in epidemic period. In this paper, Long-Short-Term-Memory (LSTM) model with simplex optimizer is proposed to forecast the electric load for an enterprise during the COVI...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaole, Wang, Yiqin, Ma, Guibo, Chen, Xin, Shen, Qianxiang, Yang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920819/
http://dx.doi.org/10.1016/j.egyr.2022.03.051
Descripción
Sumario:Electric load forecasting is a challenging research, which is of great significance to the safe and stable operation of power grid in epidemic period. In this paper, Long-Short-Term-Memory (LSTM) model with simplex optimizer is proposed to forecast the electric load for an enterprise during the COVID-19 pandemic. The forecasting process consists of data processing, LSTM network construction and optimization. Firstly, some data processing steps includes information quantifying, electric load data cleaning, correlation-coefficient-based medical data filtering, clustering-based medical data and electric load data filling. Then LSTM-based electric load forecasting model of enterprise is established during the COVID-19 pandemic. On this basis, LSTM network is trained and parameters are optimized via simplex optimizer. Finally, an example of the electric load forecasting of an enterprise during the COVID-19 pandemic is investigated. The forecasting results show that the reduced number of iterations is about 25% and the improved forecasting accuracy is about 5.6%. These results can be used as a reference for resuming production of enterprises and planning of electric grid.