Cargando…
Electric load forecasting based on Long-Short-Term-Memory network via simplex optimizer during COVID-19
Electric load forecasting is a challenging research, which is of great significance to the safe and stable operation of power grid in epidemic period. In this paper, Long-Short-Term-Memory (LSTM) model with simplex optimizer is proposed to forecast the electric load for an enterprise during the COVI...
Autores principales: | Li, Xiaole, Wang, Yiqin, Ma, Guibo, Chen, Xin, Shen, Qianxiang, Yang, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920819/ http://dx.doi.org/10.1016/j.egyr.2022.03.051 |
Ejemplares similares
-
SysMod: the ISCB community for data-driven computational modelling and multi-scale analysis of biological systems
por: Dräger, Andreas, et al.
Publicado: (2021) -
CIRED 2021: Bericht über die Session 5 – Planning of Power Distribution Systems
por: Braunstein, René
Publicado: (2021) -
IDS 2021: Die Messe ist sicher
Publicado: (2021) -
IDS 2021: Qualität statt Quantität
Publicado: (2021) -
CIRED 2021 – 26. Internationale Konferenz über elektrische Verteilnetze
por: Struber, Herwig
Publicado: (2021)