Cargando…

Effects of sampling strategies and DNA extraction methods on eDNA metabarcoding: A case study of estuarine fish diversity monitoring

Environmental DNA (eDNA) integrated with metabarcoding is a promising and powerful tool for species composition and biodiversity assessment in aquatic ecosystems and is increasingly applied to evaluate fish diversity. To date, however, no standardized eDNA-based protocol has been established to moni...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruan, Hui-Ting, Wang, Rui-Li, Li, Hong-Ting, Liu, Li, Kuang, Tian-Xu, Li, Min, Zou, Ke-Shu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920846/
https://www.ncbi.nlm.nih.gov/pubmed/35084125
http://dx.doi.org/10.24272/j.issn.2095-8137.2021.331
Descripción
Sumario:Environmental DNA (eDNA) integrated with metabarcoding is a promising and powerful tool for species composition and biodiversity assessment in aquatic ecosystems and is increasingly applied to evaluate fish diversity. To date, however, no standardized eDNA-based protocol has been established to monitor fish diversity. In this study, we investigated and compared two filtration methods and three DNA extraction methods using three filtration water volumes to determine a suitable approach for eDNA-based fish diversity monitoring in the Pearl River Estuary (PRE), a highly anthropogenically disturbed estuarine ecosystem. Compared to filtration-based precipitation, direct filtration was a more suitable method for eDNA metabarcoding in the PRE. The combined use of DNeasy Blood and Tissue Kit (BT) and traditional phenol/chloroform (PC) extraction produced higher DNA yields, amplicon sequence variants (ASVs), and Shannon diversity indices, and generated more homogeneous and consistent community composition among replicates. Compared to the other combined protocols, the PC and BT methods obtained better species detection, higher fish diversity, and greater consistency for the filtration water volumes of 1 000 and 2 000 mL, respectively. All eDNA metabarcoding protocols were more sensitive than bottom trawling in the PRE fish surveys and combining two techniques yielded greater taxonomic diversity. Furthermore, combining traditional methods with eDNA analysis enhanced accuracy. These results indicate that methodological decisions related to eDNA metabarcoding should be made with caution for fish community monitoring in estuarine ecosystems.