Cargando…

Thymax, a gross thymic extract, exerts cell cycle arrest and apoptosis in Ehrlich ascites carcinoma in vivo()

Thymax is a gross thymic extract that has been shown to induce apoptosis in vitro for human breast cancer cells. Here we examine Thymax's ability to induce apoptosis in animals bearing Ehrlich ascites carcinoma (EAC). Thymax was administered six days/week orally to mice (5.45 mg/kg body weight)...

Descripción completa

Detalles Bibliográficos
Autores principales: Badr El-Din, Nariman K., Othman, Azza I., Amer, Maggie E., Ghoneum, Mamdooh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920936/
https://www.ncbi.nlm.nih.gov/pubmed/35299600
http://dx.doi.org/10.1016/j.heliyon.2022.e09047
Descripción
Sumario:Thymax is a gross thymic extract that has been shown to induce apoptosis in vitro for human breast cancer cells. Here we examine Thymax's ability to induce apoptosis in animals bearing Ehrlich ascites carcinoma (EAC). Thymax was administered six days/week orally to mice (5.45 mg/kg body weight) beginning either 14 days prior to EAC inoculation or 9 days post inoculation; treatment continued for 30 days post inoculation. Pretreatment of mice with Thymax markedly delayed tumor growth and reduced tumor incidence by 38.9%, and tumor volumes relative to untreated controls were suppressed by 90.5% and 55.0% for pre- and post-inoculation groups, respectively. Treatment with Thymax inhibited cellular proliferation by decreasing the expression of tumor markers Ki-67, PCNA, and Cyclin D1 in cancer cells and increasing the expression of p21 and p27. This was associated with the ability of Thymax to arrest the cell cycle of EAC cells in the G0/G1 phase and to induce apoptosis, as indicated by a significant increase in the sub-G1 phase's percentage of hypodiploid cells and further affirmed by DNA fragmentation and Annexin V/propidium iodide staining. In addition, Thymax exerted its apoptotic effect in EAC cancer cells through a mitochondrial-dependent pathway, as evidenced by an increased Bax/Bcl-2 ratio, up-regulation of p53 expression, and activation of caspase-3. We conclude that Thymax supplementation enhances tumor cell demise by arresting the cell cycle and inducing apoptosis. These data suggest that Thymax could be a new adjuvant for breast cancer treatment.