Cargando…
Deep learning–assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge
OBJECTIVES: To assess Prostate Imaging Reporting and Data System (PI-RADS)–trained deep learning (DL) algorithm performance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men with a suspicion of PCa. M...
Autores principales: | Hosseinzadeh, Matin, Saha, Anindo, Brand, Patrick, Slootweg, Ilse, de Rooij, Maarten, Huisman, Henkjan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921042/ https://www.ncbi.nlm.nih.gov/pubmed/34786615 http://dx.doi.org/10.1007/s00330-021-08320-y |
Ejemplares similares
-
Semisupervised Learning with Report-guided Pseudo Labels for Deep
Learning–based Prostate Cancer Detection Using Biparametric
MRI
por: Bosma, Joeran S., et al.
Publicado: (2023) -
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer
por: Bleker, Jeroen, et al.
Publicado: (2019) -
AI-assisted biparametric MRI surveillance of prostate cancer: feasibility study
por: Roest, C., et al.
Publicado: (2022) -
Artificial intelligence in radiology: 100 commercially available products and their scientific evidence
por: van Leeuwen, Kicky G., et al.
Publicado: (2021) -
Algorithmic transparency and interpretability measures improve radiologists’ performance in BI-RADS 4 classification
por: Jungmann, Friederike, et al.
Publicado: (2022)