Cargando…
Explainable AI to improve acceptance of convolutional neural networks for automatic classification of dopamine transporter SPECT in the diagnosis of clinically uncertain parkinsonian syndromes
PURPOSE: Deep convolutional neural networks (CNN) provide high accuracy for automatic classification of dopamine transporter (DAT) SPECT images. However, CNN are inherently black-box in nature lacking any kind of explanation for their decisions. This limits their acceptance for clinical use. This st...
Autores principales: | Nazari, Mahmood, Kluge, Andreas, Apostolova, Ivayla, Klutmann, Susanne, Kimiaei, Sharok, Schroeder, Michael, Buchert, Ralph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921148/ https://www.ncbi.nlm.nih.gov/pubmed/34651223 http://dx.doi.org/10.1007/s00259-021-05569-9 |
Ejemplares similares
-
Data-driven identification of diagnostically useful extrastriatal signal in dopamine transporter SPECT using explainable AI
por: Nazari, Mahmood, et al.
Publicado: (2021) -
No impact of attenuation and scatter correction on the interpretation of dopamine transporter SPECT in patients with clinically uncertain parkinsonian syndrome
por: Schiebler, Tassilo, et al.
Publicado: (2023) -
Stereotactical normalization with multiple templates representative of normal and Parkinson-typical reduction of striatal uptake improves the discriminative power of automatic semi-quantitative analysis in dopamine transporter SPECT
por: Apostolova, Ivayla, et al.
Publicado: (2023) -
Impact of the size of the normal database on the performance of the specific binding ratio in dopamine transporter SPECT
por: Schmitz-Steinkrüger, Helen, et al.
Publicado: (2020) -
Impact of age and sex correction on the diagnostic performance of dopamine transporter SPECT
por: Schmitz-Steinkrüger, Helen, et al.
Publicado: (2020)